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Abstract
The tight-binding (TB) approach to the modelling of electrical conduction in
small structures is introduced. Different equivalent forms of the TB expression
for the electrical current in a nanoscale junction are derived. The use of the
formalism to calculate the current density and local potential is illustrated
by model examples. A first-principles time-dependent TB formalism for
calculating current-induced forces and the dynamical response of atoms is
presented. An earlier expression for current-induced forces under steady-state
conditions is generalized beyond local charge neutrality and beyond orthogonal
TB. Future directions in the modelling of power dissipation and local heating
in nanoscale conductors are discussed.

1. Introduction

The study of the mechanical, chemical and transport properties of nanoscale structures is a
dynamic modern subject, defining an interface between physics, chemistry, materials science,
engineering and biology. Structures accessible to experimental and theoretical study in this field
range from atomic-scale metallic contacts, atomic chains, clusters and molecules to structures,
such as carbon nanotubes and DNA molecules, with lengths of many thousands of atoms. In a
typical transport experiment, a given nanostructure of interest is placed between two electrodes
and a bias is applied between the electrodes, resulting in the flow of electrical current through
the nanostructure. Such experiments pose two fundamental theoretical questions. The first
is: how do the differential conductance and the current–voltage characteristics of the circuit
depend on the positions and chemical identity of the atoms in the nanostructure, and on the
nature of the electrodes and their coupling to the nanostructure? The second is: what is the
effect of conduction on the mechanical properties of the nanostructure, and, in particular, how
does current flow affect interatomic forces and the temperature in the nanostructure?

These questions require an approach that allows one to describe simultaneously, at the
atomistic level, the quantum mechanical motion of electrons and the interaction between
electrons and individual nuclei in the conducting system. The free-electron model, TB and
density functional theory (DFT) have all been applied to the nanoscale transport problem.
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As is often the case in electronic structure theory, this progression of models represents varying
degrees of compromise between numerical and conceptual tractability on the one hand and
quantitative accuracy on the other. The choice of method in any particular problem depends
on the purpose of the investigation and on the taste of the researcher. The particular strengths
of TB that the author has encountered in his own work are the following. First, it is the
simplest model that allows one to take explicit account of atomistic structure, and to track the
relation between atomistic structure and conduction properties. Second, TB allows mechanical
structure, transport and current-induced mechanical effects to be treated within a transparent
common conceptual framework, namely on the basis of the concept of the interatomic bond.
Third, since TB involves the expansion of electron wavefunctions in a discrete positional basis,
namely an atomic orbital basis, many mathematical results of the TB transport formalism are
directly transferable to any other electronic model, if that model is to be solved on a discrete
computational mesh [1–4]. Fourth, the relatively modest size of TB basis sets pays off in the
size of systems that are open to TB transport simulations.

The strengths of the TB approach to transport are illustrated by the range of problems
to which it has been applied. TB has been used to model the operation of the scanning
tunnelling microscope (STM), with and without adsorbates, over a range of tip–substrate
separations [5–17]. TB is employed to calculate the differential conductance and current–
voltage characteristics of molecular wires [18–35]. It can be used to study the transport
properties of long disordered quantum wires in the ballistic, diffusive and localization
regimes [36–46]. TB has been applied to the modelling of transport in, and STM imaging
of, carbon nanotubes [40, 47–72]. TB has been successful in the study of transport in metal–
insulator–metal tunnel junctions, spin valves and magnetic multilayers [73–88]. The TB
transport formalism, combined with molecular dynamics simulations, was used to relate the
experimentally measured conductance of an atomic-scale metallic contact to the evolution of
the underlying atomistic geometry and structure of the contact during contact formation and
fracture [89–91]. TB has been used to relate the conduction properties of atomic-scale metallic
contacts and atomic chains to the detailed chemistry of the metal atoms [92–98]. Recently, a TB
formalism was developed to calculate changes to interatomic bonding forces under electrical
current flow in atomic-scale conductors [99, 100]. This formalism allows intrinsic forces,
the electrical current and current-induced forces to be calculated simultaneously, within a
single, internally consistent calculation. The method is sufficiently efficient to enable structural
relaxation and atomic movements to be performed in the simulation, which in turn makes it
possible to calculate current-induced changes to activation barriers and rates for various atomic
rearrangements. The formalism has been used to model electromigration and current-induced
fracture of atomic wires [101, 102].

An exhaustive review of the literature in any one of the above areas would constitute
a daunting task. The aim of the present article is to give an introduction to the physical
and mathematical principles of the TB approach to transport in a unified way that would be
of use to researchers in any one of these areas. First, we will consider the TB description of
electrical current flow. Various commonly used forms of the TB result for the total current, and
differential conductance, in a nanojunction are derived, and the equivalence between them is
demonstrated. The calculation of the local current density and local potential in the presence of
current flow is illustrated by model numerical examples. We then consider the TB simulation
of current-induced mechanical effects. A general time-dependent (TD) TB formalism for
calculating forces on atoms in the presence of transport, and the dynamical response of atoms
to these forces, is presented [103]. Under steady-state conditions, in the limit of local charge
neutrality (LCN), an earlier result for current-induced forces is recovered. This result is
generalized beyond charge neutrality and beyond orthogonal TB models. Future directions in
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the simulation of power dissipation and local heating in nanojunctions are outlined. A one-
electron picture is used throughout. Electron–electron interactions and self-consistency are
treated in a mean-field picture.

2. Tight-binding transport formalism: set-up and fundamental quantities

2.1. Representation of the circuit

The fundamental set-up considered in this paper is shown in figure 1 [36, 38, 104]. The
conducting system consists of two semi-infinite electrodes, to be referred to as lead 1 and
lead 2, connected by an intermediate region, to be referred to as the sample. In fact, the division
of the system into these regions is nominal, because, as is explained below, the assumptions
that we make about the leads and the sample are general and unrestrictive. No constraint is
imposed on the dimensionality, transverse size and transverse shape of the leads. They can
be one-dimensional atomic chains, two-dimensional planar atomic strips or three-dimensional
wires of arbitrary cross-section. The sample is a cluster of atoms of arbitrary size, structure,
geometry and composition. Thus, the sample could be a single atom or an atomic chain,
connecting the leads. It could be a molecule, or a metallic connective neck, representing a
nanoscale constriction. The lead–sample–lead assembly could represent an STM junction,
with or without an adsorbate. The sample may be an insulating barrier. The sample and leads
may all have the same uniform cross-section, in which case the lead–sample–lead system
constitutes a single continuous piece of wire of uniform thickness. We, furthermore, may
always redefine the leads and sample by including parts of each lead into the region that we
are calling the sample, or vice versa. The only definite assumption that we make about the
structure of the system is that far away from the sample region each lead is a perfect defect-free
crystalline conductor with a uniform cross-section.

We will, for now, ignore atomic motion and assume that at any instant in time the electrons
in the system see a frozen, static set of atomic positions. In other words, for now we allow
only elastic electron scattering. The justification for this approximation is that in many cases
the inelastic electron mean free path is much larger than the typical dimension of the sample
region, and, therefore, as far as the motion of the electrons in that region is concerned, we
may to a good approximation ignore electron–phonon scattering. Extensions of the transport
formalism beyond the elastic regime are given for example in references [105, 106]. Here,
we will return to the question of electron–phonon interactions later, in connection with local
heating at high current densities.

Next, we imagine that at infinity each lead is connected through a smooth contact to a
macroscopic conductor, acting as a particle reservoir. The electrochemical potential [107] of
reservoir 1, µ1, is raised relative to that of reservoir 2, µ2, by an amount eW , µ1 = µ2 + eW .
Positive eW corresponds to electron flow from left to right. Each reservoir injects electrons
into its respective lead with the Fermi–Dirac distribution function appropriate to that reservoir,
resulting in a net steady-state flow of current through the lead–sample–lead system. One
way of achieving the bias is to connect a battery of battery voltageW across the reservoirs, as
indicated in figure 1. Another way would be to deposit appropriate macroscopic charges on the
reservoirs, in which case the system becomes a capacitor, discharging quasistatically through
the lead–sample–lead system. In a calculation, to model for example a metallic nanocontact
between macroscopic electrodes, one might take the leads to have an infinite transverse size
compared with the sample [89–91, 99, 102]. In that case the distinction between leads and
reservoirs disappears, and the leads themselves may be thought of as reservoirs [108, 109].
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Figure 1. The general conducting system considered in the paper. The intermediate sample region
can have an arbitrary atomistic geometry and composition. Far away from the sample each semi-
infinite lead is a defect-free crystalline conductor of uniform cross-section. At infinity, each lead is
connected through a smooth contact to a particle reservoir, acting as a battery terminal. The details
are discussed in the text.

2.2. Electronic structure of the circuit

A one-electron picture is employed throughout this paper. The one-electron eigenstates of the
lead–sample–lead system, whether calculated self-consistently or not, and whether calculated
within a free-electron jellium model [110], TB [36] or DFT [111], may be divided into two
groups [36, 99, 104]. One group, {|ψ1〉} with energies {E1}, which will be referred to as
right-travelling states, consist of a right-travelling incident electron wave in lead 1, scattered
in the sample region, partially reflected back into lead 1 and partially transmitted into lead 2.
The other group, {|ψ2〉} with energies {E2}, which will be referred to as left-travelling states,
consist of a left-travelling incident electron wave in lead 2, scattered in the sample region,
partially reflected back into lead 2 and partially transmitted into lead 1. Reservoir 1 populates
the right-travelling states with a population function f1(E) and reservoir 2 populates the left-
travelling states with a population function f2(E) = f1(E + eW), where f1(E) and f2(E) are
the Fermi–Dirac distribution functions for the two respective reservoirs [36, 99, 104]. Then
the electrons in the current-carrying lead–sample–lead system are described by the Hermitian
one-electron density operator

	(W) =
∫
f1(E)D1(E) dE +

∫
f2(E)D2(E) dE (1)

where

D1(E) =
∑

1

|ψ1〉δ(E − E1)〈ψ1| (2)

D2(E) =
∑

2

|ψ2〉δ(E − E2)〈ψ2| (3)

are the partial density-of-states operators associated with the right- and left-travelling states
respectively. D1(E) and D2(E) are related by

D1(E) +D2(E) = D(E) (4)

where D(E) is the full density of states operator for the lead–sample–lead system. In a self-
consistent calculation, the states {|ψ1〉} and {|ψ2〉} are themselves functions of the applied bias
W [99, 111].
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For simplicity, here we have assumed that the lead–sample–lead system does not have
bound states. In fact, bound states are common. For example, an infinite regular atomic
chain, containing a single atom that is different from the rest, will in general have one or more
bound states, centred at that atom. Although we will not consider bound states explicitly here,
such states can in general be accommodated in the formalism both when they lie outside the
energy continuum of conducting states and in the special case of bound states embedded in
the continuum.

2.3. Tight-binding representation of the electron states

The defining feature of TB is the expansion of one-electron states in a localized atomic orbital
basis {|φnγ 〉}, where |φnγ 〉 is an atomic orbital of type γ , centred at atomic site n. In this basis,
a general electron state |ψ〉 is written as

|ψ〉 =
∑
n,γ

ψnγ |φnγ 〉 (5)

where {ψnγ } are expansion coefficients. We will not consider spin-polarized systems and will
assume that the basis states {|φnγ 〉}, and the states {|ψ1〉} and {|ψ2〉}, do not carry a spin label.
Spin degeneracy is thus to be introduced via the distribution functions f1(E) and f2(E) in
equation (1).

In this paper, as far as the description of current flow, discussed in sections 2–5, is
concerned, we will ignore the overlap of different positional basis states. This stipulation
may be expressed as

〈φnγ |φn′γ ′ 〉 = δnn′δγ γ ′ . (6)

In doing so, we may wish to preserve our view of the basis states {|φnγ 〉} as actual atomic
orbitals. Then equation (6) must be viewed as an approximation, whose quality is controlled
by the magnitude of the overlap that exists in reality. Alternatively, we may view |φnγ 〉 as an
abstract positional basis with an inner product, defined by equation (6). This is the view taken
in solving quantum mechanical transport problems on a discrete computational grid [1–4].
Extensions of the transport formalism to non-orthogonal TB models may be found for instance
in [30, 34, 35, 53, 71, 72, 97, 112, 113]. In this paper, we will consider non-orthogonal models
later on, in connection with TD TB and current-induced forces.

In the orthogonal positional basis, the Hermitian TB one-electron Hamiltonian is written
as

H =
∑

n,γ,n′,γ ′
|φnγ 〉Hnγn′γ ′ 〈φn′γ ′ |. (7)

The TB Hamiltonian matrix elements Hnγn′γ ′ = H∗
n′γ ′nγ will in general depend in a self-

consistent manner on the instantaneous electron density in the system [99]. Such self-consistent
contributions to Hnγn′γ ′ will be discussed in detail in connection with TD TB and current-
induced forces. In a self-consistent calculation, the effective one-particle TB Hamiltonian H
will, furthermore, be a function of the applied bias W [99]. The diagonal TB Hamiltonian
matrix elements are often referred to as on-site energies, and the off-diagonal ones as hopping
integrals. We will assume here that the hopping integrals have an arbitrary but finite spatial
range. Let us also define the general notation Anγn′γ ′ by

A =
∑

n,γ,n′,γ ′
|φnγ 〉Anγn′γ ′ 〈φn′γ ′ | (8)

for any TB one-electron operator A, expressed in the orthogonal positional basis {|φnγ 〉}. In
this orthogonal basis, A and Anγn′γ ′ are related by Anγn′γ ′ = 〈φnγ |A|φn′γ ′ 〉.



3054 T N Todorov

In an orthogonal TB model with frozen atomic positions, a general one-electron state
|ψ(t)〉 = ∑

n,γ ψnγ (t)|φnγ 〉 satisfies the TD Schrödinger equation (SE)

H|ψ(t)〉 = ih̄|ψ̇(t)〉 (9)

or, in matrix form,∑
n′,γ ′

Hnγn′γ ′ψn′γ ′(t) = ih̄ψ̇nγ (t). (10)

If |ψ〉 is an eigenstate of H, then it satisfies the time-independent SE

H|ψ〉 = E|ψ〉 (11)

or, in matrix form,∑
n′,γ ′

Hnγn′γ ′ψn′γ ′ = Eψnγ (12)

where E is the respective energy eigenvalue.

2.4. Bond current operator and total current operator

Let us define the projection operator

Pn =
∑
γ

|φnγ 〉〈φnγ |. (13)

This operator represents the electron occupancy of atomic site n. The {Pn} satisfy the closure
relation ∑

n

Pn = 1 (14)

where 1 is the identity operator within the Hilbert space spanned by the orthogonal positional
basis {|φnγ 〉}. Let us now seek the operator, Jn, representing the rate of change of the occupation
of site n. Let |ψ(t)〉 be a general TD electron state, and let Pn(t) = 〈ψ(t)|Pn|ψ(t)〉. Let
us consider the equation of motion of Pn(t) [36, 114, 115]. Equation (9) gives Ṗn(t) =
(1/ih̄)〈ψ(t)|[Pn,H]|ψ(t)〉. We may then identify Jn as [36, 114, 115]

Jn = (1/ih̄)[Pn,H] = (1/ih̄)
∑
n′ 
=n
(PnHPn′ − Pn′HPn). (15)

From this relation, it is natural to identify the quantity

Jn′n = (1/ih̄)(PnHPn′ − Pn′HPn) = (1/ih̄)
∑
γ,γ ′
(|φnγ 〉Hnγn′γ ′ 〈φn′γ ′ | − |φn′γ ′ 〉Hn′γ ′nγ 〈φnγ |)

(16)

as an operator that represents the electron particle current from site n′ into site n [1,2,44,104].
Notionally, this intersite current may be represented by a bundle of flow lines bunched together
along the line joining the two sites, and may thus be thought of as a bond current. The bond
current operator Jn′n may be obtained also from considerations of the form of the SE on a
discrete mesh [1, 2].

The logic of the derivation of the bond current operator above must be revised in the case
of non-orthogonal orbitals. In that case, both physically and mathematically, if an electron
occupies an orbital on a given atomic site, then, via the non-vanishing overlap, this electron
also partially occupies orbitals on neighbouring sites. Therefore, while we may still define the
projection operator Pn in equation (13), we may no longer unambiguously interpret the rate
of change of the expectation of Pn as the particle current into site n alone. Hence, a possible
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strategy in that case might be to use the starting, non-orthogonal orbital basis to construct a
new, orthogonal basis, thus reducing the problem to the one considered here. Specific schemes
for dealing with the non-orthogonal case are discussed in [30, 34, 35, 53, 71, 72, 97, 112, 113].

Let us now consider the operator, JS , that represents the total electron particle current
across a given open surface S through the system. JS is given by the sum of bond current
operators across S, or [36, 38, 104, 114, 115]

JS = (1/ih̄)
∑

n∈R,n′∈L
Jn′n (17)

= (1/ih̄)(P2HP1 − P1HP2) (18)

= (1/ih̄)[P2,H] (19)

= −(1/ih̄)[P1,H] (20)

whereL andR designate the region to the left of S and the region to the right of S, respectively,
and

P1 =
∑
n∈L
Pn P2 =

∑
n∈R
Pn (21)

P1P2 = P2P1 = 0 P1P1 = P1 P2P2 = P2 (22)

P1 + P2 = 1. (23)

As may be seen from equation (18), the operator JS , when expressed in the positional basis
{|φnγ 〉}, contains only a finite number of terms, namely terms that involve atomic sites bonded
across S by the TB Hamiltonian.

2.5. The operator D

We will now express the density-of-states operatorsD1(E),D2(E) andD(E) in equations (2)–
(4) in terms of the Green operator for the lead–sample–lead system. The susceptibility of the TB
method to a formulation in terms of Green functions is a great mathematical and computational
strength. We begin with the full density-of-states operator D(E).

The Green operator,G(z), for a Hamiltonian H with eigenstates {|ψs〉} and eigenenergies
{Es} is given by

G(z) =
∑
s

|ψs〉(z− Es)−1〈ψs |. (24)

It satisfies

(z− H)G(z) = G(z)(z− H) = 1 (25)

or, in matrix form,

zGnγn′γ ′(z)−
∑
n′′,γ ′′

Gnγn′′γ ′′(z)Hn′′γ ′′n′γ ′ = δnn′δγ γ ′ = zGnγn′γ ′(z)−
∑
n′′,γ ′′

Hnγn′′γ ′′Gn′′γ ′′n′γ ′(z)

(26)

G(z) has the property

G(z∗) = G†(z). (27)

Let us also define the retarded and advanced Green operators, G±(E), by

G±(E) =
∑

n,γ,n′,γ ′
|φnγ 〉G±

nγn′γ ′(E)〈φn′γ ′ | (28)

where

G±
nγn′γ ′(E) = lim

ε→0+
Gnγn′γ ′(E ± iε) (29)
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µ1
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φ1 φ2
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W

Figure 2. The lead–sample–lead system with one cutting surface, S. The semi-infinite systems 1
and 2, on the left and on the right of S respectively, are described by a TB Hamiltonian obtained
from the original Hamiltonian for the lead–sample–lead system by the removal of all hopping
integrals intersected by S, possibly accompanied by arbitrary modifications to a finite number of
other hopping integrals and on-site energies. The details are discussed in the text.

G+(E) and G−(E) have the property

G+(E) = G−†(E). (30)

In a self-consistent calculation, like H, the operatorsG(z) andG±(E) are functions of the bias
W [99]. The full density-of-states operator D(E) in equation (4) may now be expressed as

2π iD(E) = G−(E)−G+(E). (31)

2.6. The operators D1 and D2 with a cut

In order to express the operators D1(E) and D2(E) in equations (1)–(3) in a tractable form,
we employ the following trick [104]. Let us choose an arbitrary open surface across the
lead–sample–lead system, such as the surface S in figure 2. Let us imagine removing all
bonds—which we will assume to be finite in number—intersected by S, so as to separate the
lead–sample–lead system into two decoupled systems. In addition to the cut along S, we may,
furthermore, make arbitrary modifications to the TB Hamiltonian to the left and to the right of
S, so long as these modifications involve only a finite number of atomic sites. This procedure
may be summarized by writing

H = H0 + V (32)

where

V = P1HP2 + P2HP1 + V (1) + V (2). (33)

The first two terms in V contain the bonds, or hopping integrals, intersected by S, and represent
the cut along S. The Hermitian operators V (1) and V (2) each have a finite number of non-zero
positional matrix elements. V (1)nγ n′γ ′ can be non-zero only if both n and n′ lie on the left of S, and

V (2)nγ n′γ ′ can be non-zero only if both n and n′ lie on the right of S. Within these specifications,
V (1) and V (2) are arbitrary. The system, described by the Hamiltonian H0 = H − V , consists
of two decoupled semi-infinite systems, designated as system 1 and system 2 in figure 2.
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Scattering theory tells us that each right-travelling eigenstate of the lead–sample–lead
system, |ψ1〉 with energyE1, may be derived from a corresponding eigenstate, |φ1〉, of system 1,
with the same energy, via the Lippmann–Schwinger equation [36, 104]

|ψ1〉 = [1 +G+(E1)V]|φ1〉. (34)

|φ1〉 consists of an incident electron wave in lead 1, scattered back into lead 1 by the severed end.
Similarly, each left-travelling eigenstate of the lead–sample–lead system, |ψ2〉 with energyE2,
may be derived from a corresponding eigenstate, |φ2〉, of system 2 via

|ψ2〉 = [1 +G+(E2)V]|φ2〉. (35)

Using equations (34) and (35), we may write equations (2) and (3) as [104]

D1(E) = [1 +G+(E)V]d1(E)[1 + VG−(E)] (36)

D2(E) = [1 +G+(E)V]d2(E)[1 + VG−(E)] (37)

where

d1(E) =
∑

1

|φ1〉δ(E − E1)〈φ1| (38)

d2(E) =
∑

2

|φ2〉δ(E − E2)〈φ2|. (39)

Here, d1(E) and d2(E) are the density-of-states operators for the decoupled systems 1 and 2,
respectively. They may be expressed in terms of the corresponding Green operators as follows.

Let g(z) be the Green operator, corresponding to the Hamiltonian H0 in equation (32),
with (z− H0)g(z) = g(z)(z− H0) = 1. G(z) and g(z) are related by the Dyson equations

G(z) = g(z) + g(z)VG(z) = g(z) +G(z)Vg(z). (40)

Let g+(E) and g−(E) = g+†(E) be defined by

g±(E) =
∑

n,γ,n′,γ ′
|φnγ 〉g±

nγn′γ ′(E)〈φn′γ ′ | (41)

where

g±
nγn′γ ′(E) = lim

ε→0+
gnγn′γ ′(E ± iε) (42)

G±(E) and g±(E) are related by the Dyson equations

G±(E) = g±(E) + g±(E)VG±(E) = g±(E) +G±(E)Vg±(E). (43)

Let

g±
1 (E) = P1g

±(E) = g±(E)P1 (44)

g±
2 (E) = P2g

±(E) = g±(E)P2. (45)

g±
1 (E) andg±

2 (E) are the retarded and advanced Green operators for the two decoupled systems
1 and 2, respectively [36, 104]. Then

2π id1(E) = g−
1 (E)− g+

1 (E) (46)

2π id2(E) = g−
2 (E)− g+

2 (E). (47)

Equations (36) and (37), together with (46) and (47), constitute a useful form for the partial
density-of-states operators D1(E) and D2(E).
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2.7. The operators D1 and D2 without a cut

Equations (36) and (37) involve the Green operators for the two decoupled systems 1 and 2
in figure 2. However, our original definition of the right- and left-travelling states, {|ψ1〉} and
{|ψ2〉}, did not involve, or refer to, any particular choice of cutting surface S, or any of the
other ingredients of V in equation (33). Therefore, it must be possible to express D1(E) and
D2(E) in a form which involves solely the properties of the original lead–sample–lead system.
This may be done as follows [104].

Using equations (43) and (44), we may cast equation (36) as

2π iD1(E) = P1G
−(E)−G+(E)P1 +G+(E)(VP1 − P1V)G−(E)

= P1G
−(E)−G+(E)P1 +G+(E)(P2VP1 − P1VP2)G

−(E) (48)

where, for the second line, we have used equation (23). Since H0 contains no hopping
integrals between systems 1 and 2, we may write P2H0P1 = P1H0P2 = 0, and hence
P2VP1 − P1VP2 = P2HP1 − P1HP2. Therefore, following a similar procedure for D2(E),
we may cast equations (36) and (37) as [104]

2π iD1(E) = P1G
−(E)−G+(E)P1 +G+(E)(P2HP1 − P1HP2)G

−(E) (49)

2π iD2(E) = P2G
−(E)−G+(E)P2 +G+(E)(P1HP2 − P2HP1)G

−(E). (50)

Equations (49) and (50) contain only quantities defined for the original lead–sample–lead
system. These equations no longer contain any reference to the cut described by V . That cut
was merely a device to obtain these equations. As in the case of the current operator JS in
equation (18), the expressions inside the brackets in equations (49) and (50), when expressed
in the positional basis, contain only a finite number of terms, namely terms that involve atomic
sites bonded across S by the TB Hamiltonian.

Equations (49) and (50) still contain the projection operators P1 and P2, which were defined
with respect to a particular surfaceS. However, sinceD1(E) andD1(E)were originally defined
without reference to any such surface, the right-hand sides of equations (49) and (50) must in
fact be independent of the surface used to define P1 and P2 [104]. To see this, let us first define

2π iD1(E, ε) = P1G(z
∗)−G(z)P1 +G(z)(P2HP1 − P1HP2)G(z

∗) (51)

where z = E + iε, with ε a small positive real number. For any finite ε, the matrix elements
of G(z) and G(z∗) in the positional basis {|φnγ 〉} decay exponentially with distance along the
semi-infinite leads. If [D1(E)]nγn′γ ′ and [D1(E, ε)]nγn′γ ′ are matrix elements of D1(E) and
D1(E, ε), respectively, in the positional basis, then

[D1(E)]nγn′γ ′ = lim
ε→0+

[D1(E, ε)]nγn′γ ′ . (52)

Let us now choose some other open surface S ′, and let P ′
1 and P ′

2 be the analogues of P1 and
P2, defined with respect to S ′. Let D′

1(E) be given by equation (49) with P1 and P2 replaced
by P ′

1 and P ′
2, respectively. Let D′

1(E, ε) be given by equation (51) with P1 and P2 replaced
by P ′

1 and P ′
2, respectively. As in equation (52),

[D′
1(E)]nγn′γ ′ = lim

ε→0+
[D′

1(E, ε)]nγn′γ ′ . (53)

Let us now invoke equation (23) in order to replace P2HP1 − P1HP2 in the right-hand side
of equation (51) by HP1 − P1H. Then, from equations (25) and (27),

2π iD1(E, ε) = G(z)P1G(z
∗)(z− z∗) (54)

and similarly

2π iD′
1(E, ε) = G(z)P ′

1G(z
∗)(z− z∗) (55)
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Although P1 and P ′
1 involve summations over infinitely many sites along lead 1, the exponential

decrease of the positional matrix elements of G(z) and G(z∗) with distance along the lead
ensures that the right-hand sides of equations (54) and (55) are well defined.

Equations (54) and (55) give

2π i[D′
1(E, ε)−D1(E, ε)] = G(z) P G(z∗)(z− z∗) (56)

where  P = P ′
1 − P1. The projection operator  P contains only a finite number of atomic

sites, namely those enclosed between S and S ′. Hence, for any given n, γ , n′ and γ ′, in the limit
ε → 0+ the quantity {[D′

1(E, ε)]nγn′γ ′ − [D1(E, ε)]nγn′γ ′ } tends to zero as (z − z∗) = 2iε.
Hence, recalling equations (52) and (53), [D′

1(E)]nγn′γ ′] = [D1(E)]nγn′γ ′ . Therefore, the
positional matrix elements of D1(E), and hence also those of D2(E) = D(E) −D1(E), are
independent of the choice of open surface S, used to define P1 and P2 in equation (49). Hence,
in a calculation that employs the positional basis, the operators D1(E) and D2(E) may be
treated as independent of S [104]. The choice of surface in equations (49) and (50) is a matter
of convenience.

3. Zero-current theorem

Given the TB density operator	(W) in equation (1), the expectation value of any TB operator
A is given by

Tr[A	(W)] =
∑

n,γ,n′,γ ′
Anγn′γ ′[	(W)]n′γ ′nγ . (57)

Thus, the average electron particle bond current, Jn′n, from site n′ into site n, and the average
total current, JS , crossing a surface S, are given by

Jn′n = Tr[Jn′n	(W)] (58)

JS = Tr[JS	(W)] (59)

where Jn′n and JS are the bond current operator and the total current operator, introduced earlier.
We now assume that we may always find a set of on-site unitary transformations {U(n)}

with

|φ̃nγ 〉 =
∑
γ ′
U
(n)
γ γ ′ |φnγ ′ 〉 U

(n)∗
γ γ ′ = U(n)−1

γ ′γ (60)

such that H, and hence alsoG(z),G±(E) andD(E), is a symmetric matrix in the transformed
positional basis {|φ̃nγ 〉}. This assumption is plausible in the absence of magnetic fields. Then

Tr[Jn′nD(E)] = (1/ih̄)
∑
γ,γ ′

{Hnγn′γ ′[D(E)]n′γ ′nγ − [D(E)]nγn′γ ′Hn′γ ′nγ }

= (1/ih̄)
∑
γ,γ ′

{H̃nγn′γ ′ [D̃(E)]n′γ ′nγ − [D̃(E)]nγn′γ ′H̃n′γ ′nγ } = 0 (61)

where H̃nγn′γ ′ = 〈φ̃nγ |H|φ̃n′γ ′ 〉 = H̃n′γ ′nγ , [D̃(E)]nγn′γ ′ = 〈φ̃nγ |D(E)|φ̃n′γ ′ 〉 = [D̃(E)]n′γ ′nγ .
Since the total current operator Js is a sum of bond current operators, a result analogous to
equation (61) holds for Js too. This result [36,99,104], which the author has referred to as the
zero-current theorem in the past, enables us to write equations (58) and (59) as

Jn′n =
∫

[f1(E)− f2(E)] Tr[Jn′nD1(E)] dE (62)

JS =
∫

[f1(E)− f2(E)] Tr[JSD1(E)] dE. (63)

These equations are the basis of the TB transport formalism. We will now use them to derive
various alternative expressions for the current in the lead–sample–lead system.
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4. Total current and conductance

We will derive five equivalent sets of expressions for the total steady-state electrical current
and the differential conductance of the lead–sample–lead system in figure 1. We will begin by
showing explicitly that, as may be expected physically, JS in equation (63) is independent of
S. This will give us a starting set of current and conductance formulae, from which all other
forms of these quantities may be obtained.

4.1. Fundamental current and conductance formulae

Let us choose two different surfaces open S and S ′ across the lead–sample–lead system. Let
JS and JS ′ be the operators for the electron particle current across S and S ′, respectively. Let,
as before, the projection operator  P = P ′

1 − P1 contain the sites, finite in number, enclosed
between S and S ′. As was shown earlier,D1(E) in equation (49) is independent of the choice
of surface, used to define the projection operators in that equation. For equation (49), then, let
us select some third surface S ′′. Let P ′′

1 and P ′′
2 be the analogues of P1 and P2, defined with

respect to S ′′. Thus,D1(E) is now given by equation (49) with P1 and P2 replaced by P ′′
1 and

P ′′
2 , respectively. LetD1(E, ε) now be given by equation (51) with P1 and P2 replaced by P ′′

1
and P ′′

2 , respectively. Let S ′′ be chosen to lie sufficiently far to the left of S and S ′ to ensure
that all sites appearing in P lie to the right of S ′′, and that no site appearing in P is bonded
to any site on the left of S ′′. Therefore,  P P ′′

1 = P ′′
1  P = 0,  P HP ′′

1 = P ′′
1 H P = 0

and  P P ′′
2 HP ′′

1 = P ′′
1 HP ′′

2  P = 0. Let  J = JS ′ − JS . Then, after some rearrangement,
we find

Tr[ JD1(E, ε)] = −(1/ih̄)Tr[( P H − H P)D1(E, ε)]

= (1/2πh̄)(z− z∗)Tr[ P G(z)(P ′′
2 HP ′′

1 − P ′′
1 HP ′′

2 )G(z
∗)]. (64)

When taken in the positional basis, the trace in the last line above contains only a finite number
of terms. Hence, in the limit ε → 0+, Tr[ JD1(E, ε)] tends to zero as (z−z∗) = 2iε. Hence,
 J = ∫

[(f1(E)− f2(E)] Tr[ JD1(E)] dE = 0, and hence

JS =
∫

[f1(E)− f2(E)] Tr[JSD1(E)] dE = JS ′ =
∫

[f1(E)− f2(E)] Tr[JS ′D1(E)] dE.

(65)

Hence, JS in equations (59) and (63) is independent of the choice of surface S, used to define
the current operator JS . The choice of S in those equations is a matter of convenience.

For any S, the quantity

I = eJS = e
∫

[f1(E)− f2(E)] Tr[JSD1(E)] dE (66)

is the steady-state electrical current in the system from figure 1. Equation (66) enables one to
compute the current, and derivatives thereof such as the differential conductance σ = dI/dW ,
in the lead–sample–lead system, at any biasW . In the limit of low bias and low temperature,
equation (66) gives the zero-voltage, zero-temperature conductance

σ0 = (dI/dW)W=0 = (I/W)W=0 = 2e2 Tr[JSD1(EF )] (67)

where a spin-degeneracy factor of 2 has been included, EF is the Fermi level in the lead–
sample–lead system at W = 0, and the operator D1(EF ) is computed at W = 0. σ0 is
defined with respect to the applied bias W and gives the conductance between the reservoirs
in figure 1 [36].
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4.2. Current and conductance formulae with one cutting surface

Our next expression for I uses the set-up in figure 2. Let us take D1(E) in the form given by
equation (36). Using P2H0P1 = P1H0P2 = 0, together with equation (23), we may write
equation (18) for the current operator JS as

JS = (1/ih̄)[P2,V]. (68)

Using these results, and using the invariance of the trace under cyclic permutations, we may
now write

Tr[JSD1(E)] = (1/ih̄)Tr{[1 + VG−(E)](P2V − VP2)[1 +G+(E)V]d1(E)}. (69)

In view of equations (22), (44) and (45), g1(E)g2(E) = g2(E)g1(E) = 0. This, together with
equations (43)–(45), gives

Tr[JSD1(E)] = (2π/h̄)Tr[t†(E)d2(E)t (E)d1(E)] (70)

where

t (E) = V + VG+(E)V. (71)

Therefore, equations (66) and (67) may be written as [4, 36, 38]

I = (e/h)4π2
∫

[f1(E)− f2(E)] Tr[t†(E)d2(E)t (E)d1(E)] dE (72)

σ0 = (2e2/h)4π2 Tr[t†(EF )d2(EF )t (EF )d1(EF )]. (73)

Let us stress that for a given H—the Hamiltonian of the current-carrying lead–sample–lead
system in figure 1—the choice of surface S and of V (1) and V (2) in equation (33) is arbitrary,
within the specifications given in connection with that equation. If g±(E) in equations (44)
and (45) is liked to G±(E) via equation (43), then—for a given H—any S and any V of the
form given in equation (33) will produce the same I in equation (72) and the same σ0 in
equation (73).

4.3. Current and conductance formulae with two cutting surfaces

Let us now select two open surfaces, S and S ′, with S ′ to the right of S as shown in figure 3.
Let, as before, the projection operators P1 and P2 be defined with respect to S, and P ′

1 and P ′
2

be defined with respect to S ′. Let us now perform a cut both along S and along S ′. These two
cuts may, furthermore, be accompanied by arbitrary modifications to the TB Hamiltonian to
the left of S, between S and S ′, and to the right of S ′, so long as these modifications involve
only a finite number of atomic sites. This may be achieved by writing

H = H̄0 + V̄ (74)

V̄ = P1HP2 + P2HP1

+ P ′
1HP ′

2 + P ′
2HP ′

1

+ V̄ (1) + V + V̄ (2) (75)

where a bar is used to avoid confusion with quantities used in the case of a single cut. The
terms in the first line of equation (75) contain the bonds intersected by S. The terms in the
second line of that equation contain the bonds intersected by S ′. Here, we have assumed
that there are no bonds intersected by S and S ′ simultaneously. The Hermitian operators
V̄ (1),  V and V̄ (2) in the third line of equation (75) each have a finite number of non-zero
positional matrix elements. V̄ (1)nγ n′γ ′ can be non-zero only if both n and n′ lie on the left of

S,  Vnγn′γ ′ can be non-zero only if both n and n′ lie between S and S ′, and V̄ (2)nγ n′γ ′ can be
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W

system 1 system 2

S'S

Figure 3. The lead–sample–lead system with two cutting surfaces, S and S′. The semi-infinite
systems 1 and 2, on the left of S and on the right of S′ respectively, are described by a TB
Hamiltonian obtained from the original Hamiltonian for the lead–sample–lead system by the
removal of all hopping integrals intersected by S and of all hopping integrals intersected by S′,
possibly accompanied by arbitrary modifications to a finite number of other hopping integrals and
on-site energies. The details are discussed in the text.

non-zero only if both n and n′ lie on the right of S ′. Within these specifications, V̄ (1),  V
and V̄ (2) are arbitrary. The system described by the Hamiltonian H̄0 = H − V̄ consists of
three decoupled systems—the semi-infinite system on the left of S; the finite system between
S and S ′; and the semi-infinite system on the right of S ′. The semi-infinite system on the
left of S will now be referred to as system 1, and the semi-infinite system on the right
of S ′ will now be referred to as system 2, as shown in figure 3. Equation (75) is just a
special case of equation (33): the terms in the second line of equation (75), grouped together
with the second and third term in the third line, constitute a special case of the term V (2) in
equation (33).

The retarded and advanced Green operators, ḡ±(E), for the system after the cut are related
to the Green operators G±(E) for the original lead–sample–lead system by

G±(E) = ḡ±(E) + ḡ±(E)V̄G±(E) = ḡ±(E) +G±(E)V̄ ḡ±(E). (76)

Let

ḡ±
1 (E) = P1ḡ

±(E) = ḡ±(E)P1 (77)

ḡ±
2 (E) = P ′

2ḡ
±(E) = ḡ±(E)P ′

2 (78)

be the retarded and advanced Green operators for systems 1 and 2 in figure 3, respectively [36].
Let

2π id̄1(E) = ḡ−
1 (E)− ḡ+

1 (E) (79)

2π id̄2(E) = ḡ−
2 (E)− ḡ+

2 (E) (80)

be the density-of-states operators for the decoupled systems 1 and 2 in figure 3, respec-
tively [36].

In equation (66), let us take D1(E) in the form given by equation (49). Using
P2H̄0P1 = P1H̄0P2 = 0, together with equation (23), we may replace P2HP1 − P1HP2

in equation (49) by V̄P1 − P1V̄ . Using equations (76), (77) and (79), D1(E) may be cast as
D1(E) = [1 +G+(E)V̄]d̄1(E)[1 + V̄G−(E)]. For the current operator in equation (66), let us
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now select that across S ′, JS ′ . Using P ′
2H̄0P ′

1 = P ′
1H̄0P ′

2 = 0, together with P ′
1 + P ′

2 = 1,
we may write JS ′ = (1/ih̄)(P ′

2HP ′
1 − P ′

1HP ′
2) = (1/ih̄)[P ′

2, V̄]. Proceeding by analogy with
equation (69), we obtain [36]

I = (e/h)4π2
∫

[f1(E)− f2(E)] Tr[t̄ †(E)d̄2(E)t̄(E)d̄1(E)] dE (81)

σ0 = (2e2/h)4π2 Tr[t̄ †(EF )d̄2(EF )t̄(EF )d̄1(EF )] (82)

where

t̄ (E) = V̄ + V̄G+(E)V̄. (83)

For a given H—the Hamiltonian of the current-carrying lead–sample–lead system in figure 1—
the choice of S and S ′, and of V̄ (1),  V and V̄ (2) in equation (75), is arbitrary, within the
specifications given in connection with that equation. If ḡ±(E) in equations (77) and (78)
is linked to G±(E) via equation (76), then—for a given H—any S and S ′ and any V̄ of the
form given in equation (75) will produce the same I in equation (81) and the same σ0 in
equation (82).

4.4. Kubo form of the current and conductance formulae

Another form of equations (66) and (67) is given by [38]

I = (eh/2)
∫

[f1(E)− f2(E)] Tr[JSD(E)JSD(E)] dE (84)

σ0 = (2e2/h)(h2/2)Tr[JSD(EF )JSD(EF )]. (85)

The choice of surface S in JS in equations (84) and (85) is again arbitrary, and is a matter of
convenience.

To derive equation (84), we once again start from equation (66). Let us takeD1(E) in the
form given by equation (49). In JS , let us select the same, arbitrarily chosen, surface S as that
used to define P1 and P2 in equation (49). Let us invoke equation (18) to write equation (49)
as

2π iD1(E) = P1G
−(E)−G+(E)P1 + ih̄G+(E)JSG

−(E). (86)

We also need the following results. First, let us consider the quantity Tr[JSG+(E)JSG+(E)].
Let us replace G+(E) inside the trace by G(z), where z = E + iε, with ε a small positive real
number. Let us write JS in the form given by equation (20). Then, using equation (25) and
taking the limit ε → 0+, we find

ih̄Tr[JSG
+(E)JSG

+(E)] = − Tr[G+(E)JSP1] + Tr[JSG
+(E)P1]. (87)

Let us now invoke the transformed positional basis {|φ̃nγ 〉}, introduced in equation (60), in
which H and G±(E) are symmetric matrices. In that basis, JS is an antisymmetric matrix.
Taking the trace in the basis {|φ̃nγ 〉}, we see that − Tr[G+(E)JSP1] = Tr[JSG+(E)P1]. Hence,

ih̄Tr[JSG
+(E)JSG

+(E)] = 2 Tr[JSG
+(E)P1]. (88)

Similarly,

ih̄Tr[JSG
−(E)JSG−(E)] = −2 Tr[JSP1G

−(E)]. (89)

By similar arguments,

Tr[JSG
+(E)JSG

−(E)] = Tr[JSG
−(E)JSG+(E)]. (90)

The equivalence of equations (66) and (84) follows from equations (31), (86), (88)–(90). The
form of equation (85) for the zero-voltage conductance is familiar also from linear-response
theory [116]. In equation (84) above, this algebraic form has been generalized to arbitrary
voltages.
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4.5. Landauer formula

The Landauer formula [117] relates the current in the lead–sample–lead system to the
probabilities for electrons incident in lead 1 to be transmitted across the sample region into
lead 2. The Landauer formula may be derived from the TB transport formalism as follows.

Let us go back to the set-up in figure 2. Let us consider system 1—the semi-infinite piece
on the left after the cut has been made. We stipulated at the start that far from the sample region
each lead is a uniform crystalline wire. The most general definition of such a wire is a regular
stack of identical unit blocks. The unit block itself can have any size, structure, geometry and
composition. Let us consider for a moment an infinite such wire. Its electron eigenstates form
a set of bands. The states in each band, {|θ, b〉}, are travelling Bloch waves along the wire, with
a normalization chosen here as one electron per unit block. θ is a dimensionless wavevector
along the wire and index b labels the band. The group velocity vb, in unit blocks per second, and
the particle current Jb, carried by state |θ, b〉, are, in magnitude, vb = Jb = (1/h̄)|dEb/dθ |,
where Eb = Eb(θ) is the band energy in subband b. If a given energy E falls within a given
energy subband b, then that subband, or channel, is said to be open at energy E.

Each eigenstate, |φ1〉, of system 1 in figure 2 consists of an incident wave |θ1, b1〉,
backscattered by the severed end. We may thus label |φ1〉 by θ1 and b1, |φ1〉 = |φθ1b1〉,
and we may replace

∑
1 in equation (38) by

∑
b1

∫
dθ1/2π . A similar analysis may be made

for system 2—the semi-infinite piece on the right after the cut has been made, but we do not
need to do this explicitly here. Recalling equations (38) and (39), we may now write

4π2 Tr[t†(E)d2(E)t (E)d1(E)] = 4π2
∑
1,2

|〈φ2|t (E)|φ1〉|2δ(E − E1)δ(E − E2)

=
∑
b1∈open

Tb1(E) (91)

Tb1(E) = (2π/h̄)(1/Jb1)
∑

2

|〈φ2|t (E)|φθ1b1〉|2δ(E − E2) (92)

where t (E) is given by equation (71), b1 runs over the open channels in lead 1 at energyE and
Eb1(θ1) = E. From scattering theory, we may identify Tb1(E) above as the total probability
that an electron, incident with energy E in channel b1 in lead 1, will be transmitted across the
sample region into lead 2. Equations (72) and (73) can now be written as

I = (e/h)
∫

dE [f1(E)− f2(E)]
∑
b1∈open

Tb1(E) (93)

σ0 = (2e2/h)
∑
b1∈open

Tb1(EF ). (94)

Equation (94) is the multichannel Landauer formula for the conductance with respect to the
electrochemical potential difference between the reservoirs, µ1 − µ2 = eW [117].

4.6. Discussion

Above, it was shown that equations (72), (81), (84) and (93) for the total steady-state current,
I , in the lead–sample–lead system from figure 1 are algebraically equivalent to equation (66),
and are equivalent to one another. Similarly, equations (73), (82), (85) and (94) for the zero-
voltage, zero-temperature conductance between the reservoirs, σ0, are algebraically equivalent
to equation (67), and are equivalent to one another. The different appearances of these equations
may suggest different respective interpretations. For example, equations (72) and (73) make
contact with scattering theory and transmission probabilities, leading to the Landauer formulae



Tight-binding simulation of current-carrying nanostructures 3065

in equations (93) and (94), while equation (85) affords a comparison with linear-response
theory. Nonetheless, however varied the interpretations, for a given lead–sample–lead system,
specified by a given Hamiltonian H, the five sets of expressions for I and σ0 derived above
are physically and mathematically equivalent.

These five sets of equations for I and σ0 are used widely in TB conduction calculations,
although their derivations can vary. There are two principal reasons for the numerical efficiency
and usefulness of these equations. The first is the relatively modest size of TB orbital basis
sets in general. The second is that the evaluation of these equations requires knowledge of the
Green function for the lead–sample–lead system only over a limited set of atomic sites. In
fact, in the case of equations (66) and (84) for I , and the corresponding equations for σ0, one
needs this Green function at a single, arbitrary interface in the system.

As an illustration of the numerical power of the method, references [38] and [39] contain
calculations of the resistance as a function of length in disordered three-dimensional quantum
wires with cross-sections containing a hundred or more atoms, and with lengths reaching many
hundreds of atoms, with configurational averaging over a hundred or more disorder realizations
along the way. These calculations enabled a direct study of the transitions between the ballistic,
diffusive and localization regimes, and a direct, exact evaluation of the residual resistivity of
the respective disordered medium, from the gradient of the resistance as a function of wire
length in the diffusive regime. These calculation were performed six years ago on an ordinary
workstation without difficulty.

A typical TB transport calculation starts with the evaluation of the Green function on the
surfaces of two semi-infinite perfect leads, employing a variety of standard methods [3, 36–
39, 78, 84, 87, 88, 99]. Calculations then proceed in various ways, depending on the size of
the system. For a small sample region, one may construct and bond the sample region to the
leads in one go, by solving the appropriate Dyson equation for the Green function [36, 99].
Alternatively, one may grow the sample slice by slice, starting with a bare lead [3, 38, 39].
The Green function is recalculated on the last added slice at each step, by solving the Dyson
equation. This procedure ensures that the calculation scales only linearly with the system
length. The growth process may start from one lead and proceed to the other lead, or it may
start from both leads simultaneously and continue until the two pieces of the system meet at a
chosen interface.

Finally, although the five sets of equations for I and σ0 above were derived here in the
context of TB, the same derivation, the same equations and the same strategies for the evaluation
of these equations would hold for a general electronic model on a discrete computational
mesh [1–4].

5. Local current and potential

So far, we have considered the calculation of the total current in the lead–sample–lead system,
as a function of the applied battery voltageW . We will now consider two further questions: the
local spatial distribution of this current and the spatial variation of the self-consistent electron
potential in the conducting system. The local current density and local potential in the presence
of current flow can provide invaluable insight into the nature and mechanism of current flow
and into the concept of resistance at the atomistic scale.

5.1. Local current

Recalling equations (58) and (62), for the electrical bond current from atomic site n′ into site
n, In′n, we write [99, 104]
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In′n = eJn′n = e Tr[Jn′n	(W)] (95)

= e
∫

[f1(E)− f2(E)] Tr[Jn′nD1(E)] dE (96)

= e Tr[Jn′n  	] (97)

where  	 = 	(W)−	(0). For equation (97) we have used the fact that atW = 0 we have
f1(E) = f2(E) and hence, from equation (96), Tr[Jn′n	(0)] = 0.

Invoking equation (16), we may also write In′n as

In′n = (2e/h̄)
∑
γ,γ ′

Im{Hnγn′γ ′[	(W)]n′γ ′nγ } (98)

= (2e/h̄)
∫

[f1(E)− f2(E)]
∑
γ,γ ′

Im{Hnγn′γ ′[D1(E)]n′γ ′nγ ]} (99)

= (2e/h̄)
∑
γ,γ ′

Im(Hnγn′γ ′  	n′γ ′nγ ). (100)

In the limit of low bias and low temperature, equation (99) simplifies to

In′n = (4e2W/h̄)
∑
γ,γ ′

Im{Hnγn′γ ′[D1(EF )]n′γ ′nγ } (101)

where, as in equation (67), a spin-degeneracy factor of 2 has been included, EF is the Fermi
level in the lead–sample–lead system at W = 0, and the operator D1(EF ) is computed at
W = 0.

We will illustrate the use of equation (101) by a model example. We take a simple TB
model, with a single spherically symmetric orbital per site on a two-dimensional simple square
lattice [104]. Only nearest-neighbour sites are coupled by the TB Hamiltonian. Let us adopt
the magnitude of the nearest-neighbour hopping integral as the unit of energy. Let the on-site
energy on the native metal atoms at zero bias be chosen as 0. With this choice of energy scale,
the conduction band for the infinite perfect simple square lattice extends from −4 to +4. If
sites n′ and n are nearest neighbours, then equation (101) reduces to

In′n = (4e2W/h̄)Hn′n Im[D1(EF )]n′n (102)

where Hnn′ = Hn′n is the nearest-neighbour hopping integral.
The system for our example is shown in figure 4(a). It is a two-dimensional metallic wire

with a uniform width of twelve atoms, containing a four-atom-thick insulating region. There
are four randomly positioned metal atoms, embedded in the insulator. Figure 4(b) shows the
zero-voltage, zero-temperature conductance σ0, given by equation (67), for this system, as a
function of Fermi energy. At most energies, the conductance is much less than the quantum
conductance unit, 2e2/h. Such low conductances are characteristic of tunnelling. The four
conductance peaks, where the conductance rises to values of the order of 2e2/h, correspond
to resonant transmission.

The physical mechanism of the resonance may be seen pictorially from the nature of the
spatial distribution of the current. Figure 5 contains plots of the local current at each of the
four conductance resonances from figure 4. The arrow at each atomic site is the vector sum of
the bond currents involving that site, divided by two to reflect the fact that each bond current
is shared between two sites. We see that at each conductance peak, transmission occurs via
a path through the barrier that employs particular metal atoms, embedded in the barrier, as
stepping stones. This is an example of resonant transmission through quasibound states. In
this case, the quasibound states are the orbitals on the metal atoms in the insulator, slightly split
and broadened in energy by the coupling to the leads and to the surrounding barrier atoms. An
analogous example, relevant to the field of STM, is resonant transmission through a molecule
between two metallic electrodes [118].
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Figure 4. (a) A segment of a two-dimensional infinitely long twelve-atom-wide conducting wire,
containing a four-atom-thick disordered insulating barrier. The dark circles are the native metal
atoms, with an on-site energy of zero. The light circles are the insulator atoms, with an on-site
energy of +6. The dark circles in the barrier are metal atoms embedded in the insulator. (b) The
zero-voltage, zero-temperature conductance for this system as a function of the Fermi energy.

5.2. Local potential

Now we turn to the spatial variation of the self-consistent one-electron potential in the current-
carrying lead–sample–lead system. In a TB model, the local potential is represented by the
diagonal Hamiltonian matrix elements, or on-site energies, {Hnγnγ }. We will see later that in
an ab initio TB model [103] each on-site energy is given by 〈φnγ |(T̂ + V̂ )|φnγ 〉, where |φnγ 〉 is
an actual atomic orbital at site n, T̂ is the kinetic energy operator and V̂ = ∫ |r〉V (r, t)〈r| dr is
the actual self-consistent local one-electron potential. Here,V (r, t) = δE/δρ, where E = E[ρ]
is the electrostatic plus the exchange–correlation energy of the electrons, as a functional of the
instantaneous electron density at time t , ρ = ρ(r, t). Therefore, each on-site energy contains
a spatial average of the effective local one-electron potential, weighted by the electron density
associated with orbital |φnγ 〉.

A possible simplification is to assume that at each site n, {Hnγnγ } can vary at most by a
rigid on-site shift,  n, independent of γ [99, 119]. In this simplified picture,  n represents
the effective local one-electron potential at site n. In view of the above remarks, this effective
potential must, fundamentally, be viewed as the Hartree potential plus an exchange–correlation
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Figure 5. (a) The local current at each atomic site at conductance resonance A in figure 4, with
EF = −0.936. The current is proportional to the length of the arrow. The largest arrow on the plot
corresponds to a current of 0.73×2e2W/h. (b) The local current at each atomic site at conductance
resonance B in figure 4, withEF = −0.666. The largest arrow on the plot corresponds to a current
of 0.12×2e2W/h. (c) The local current at each atomic site at conductance resonanceC in figure 4,
with EF = −0.499. The largest arrow on the plot corresponds to a current of 0.11 × 2e2W/h.
(d) The local current at each atomic site at conductance resonanceD in figure 4, withEF = −0.337.
The largest arrow on the plot corresponds to a current of 0.89 × 2e2W/h.

correction. Ultimately, the on-site energy shifts { n} must be calculated as self-consistent
functions of the electron charge distribution in the system. This must be done by setting up an
appropriate TB form of the self-consistent equations that couple the electron density ρ to the
effective potential V in calculations based on the Poisson equation or on DFT [32, 109, 111].
Examples of such charge-self-consistent TB transport calculations are given in [57,63,69,120].
Here, we will consider such self-consistent TB models later on, in connection with TD TB and
current-induced forces.

A widely used approximation is to adjust { n} in such a way as to keep the electron
occupancy of each site fixed [8, 16, 93–95, 97, 99–102, 119, 121]. We will refer to this
approximation as the approximation of LCN. The justification for the LCN approximation,
as well as its limitations, must be stated explicitly. In homogeneous regions in a metal, where
the one-electron potential varies sufficiently slowly spatially, LCN becomes exact [104]. In
such regions { n}, calculated within the LCN approximation, give a correct description of
the variation of the self-consistent one-electron potential. In such regions, furthermore, the
effective one-electron potential and the electrochemical potential [107] follow each other in
shape [104,109,122], and hence, up to an additive constant, in such regions the { n} give also
the local electrochemical potential.
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In regions of electron scattering, in the vicinity of crystal defects or other structural
irregularities or geometrical variations, there may in reality be deviations from LCN. In
such regions, and in general, LCN may be justified by appealing to a variational principle.
This principle allows a system, both in equilibrium and in the presence of steady-state
conduction, to be described by a free-energy function, which is stationary with respect to
small variations in the one-electron wavefunctions [99, 119]. The use of the approximate
wavefunctions that produce LCN, therefore, should introduce a second-order error into this
free-energy function, and into quantities derived from it, such as interatomic forces [99, 119].
Hence, provided that the deviations from LCN that exist in reality are not extreme, LCN may be
expected to give a good description of interatomic forces, within the limitations of the TB orbital
basis set used. In the case of quantities that are not derived from the variational free-energy
function, such as, indeed, the effective one-electron potential or the electron charge density,
LCN should be viewed merely as giving a model indication of their spatial variation. An
alternative view of LCN as the limit of vanishing capacitance will be discussed later in the paper.

Even within LCN, the calculation of the on-site energy shifts { n} in general requires an
iterative numerical procedure, both in the absence and in the presence of current flow [99].
However, a conceptually transparent and informative approximate expression for the one-
electron potential in the presence of current flow may be obtained by the following Thomas–
Fermi-type argument [41, 104].

In an orthogonal TB model, the electron occupancy of site n is given by Tr[Pn	(W)] =∑
γ [	(W)]nγnγ . Let us, without loss of generality, setµ1 = EF +eW/2 andµ2 = EF−eW/2,

where, once again, µ1 and µ2 = µ1 − eW are the electrochemical potentials of reservoirs 1
and 2 in figure 1, respectively, and EF is the position of the Fermi level in the lead–sample–
lead system in the absence of current flow. When the battery is connected, it populates all
right-travelling states with energies from EF up to µ1 = EF + eW/2, and it depopulates all
left-travelling states with energies from EF down to µ2 = EF − eW/2. To lowest order inW ,
this changes the electron occupancy of site n by an amount (eW/2)

∑
γ {[D1(EF )]nγnγ −

[D2(EF )]nγnγ }, per spin. Assume now that the local potential varies sufficiently slowly
spatially to ensure that variations in this potential rigidly shift the local band structure. Then, to
keep the occupancy of site n fixed, the on-site energy of that site must be shifted by an amount
eWn such that eWn

∑
γ [D(EF )]nγnγ = (eW/2)∑γ {[D1(EF )]nγnγ − [D2(EF )]nγnγ }, or

Wn = (W/2)[(D1)n − (D2)n]/Dn = W [(D1)n/Dn − 1/2] (103)

where (D1)n = ∑
γ [D1(EF )]nγnγ , (D2)n = ∑

γ [D2(EF )]nγnγ andDn = ∑
γ [D(EF )]nγnγ =

(D1)n + (D2)n. Since the one-electron potential is defined only up to an arbitrary additive con-
stant, we may also writeWn in the symmetric form

eWn = [µ1(D1)n + µ2(D2)n]/Dn. (104)

The bias-induced on-site potential shifts {Wn} in equation (103) represent the additional
self-consistent one-electron potential that develops in the system upon the onset of steady-
state current flow. Equation (103) illustrates two general features of this additional, bias-
induced potential profile. First, 0 < (D1)n < Dn and hence, at any point in the lead–
sample–lead system, |W/2| > Wn > −|W/2|. Therefore, the potential difference between
any two points within the lead–sample–lead system will in general be less in magnitude
than the full battery voltage W , which is attained between a point deep in reservoir 1 and
a point deep in reservoir 2 [41, 104, 108, 109, 123]. Hence, the conductance between any two
points within the lead–sample–lead system in general exceeds the conductance between the
reservoirs [41, 104, 108, 109, 123], given by σ0 in equations (67), (73), (82), (85) and (94).

If the leads have an infinite transverse size compared with the sample region, then deep
inside lead 1 the amplitude of the left-travelling states {|ψ2〉} tends to zero, because of the
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geometrical spreading of the transmitted parts of the left-travelling wavefunctions, as they
emerge from the narrow sample region into the left lead. Hence, deep inside lead 1, (D2)n → 0,
(D1)n/Dn → 1 and Wn → W/2. By a similar argument, deep in lead 2, Wn → −W/2.
Hence, as stated earlier, the leads now themselves play the role of reservoirs, and σ0 in
equations (67), (73), (82), (85) and (94) may be viewed as the conductance between a point
deep in lead 1 and a point deep in lead 2.

If the leads have a finite cross-section, then there is a limit to how much an electron wave,
transmitted through the sample, can spread out in the lead beyond. The transmitted parts
of the left-travelling wavefunctions now remain finite in amplitude everywhere in lead 1.
Hence, (D1)n/Dn now never quite makes it up to unity in lead 1. Therefore, except in
the limit of a completely opaque sample, Wn never quite reaches W/2 in lead 1, and, by
a similar argument, it never quite reaches −W/2 in lead 2. Hence, now the conductance
between a point in lead 1 and a point in lead 2 will exceed the conductance σ0 between the
reservoirs [41, 104, 108, 109, 123]. Expressions for this enhanced conductance between the
leads have been derived explicitly [108, 117].

The second point, shown by equation (103), is that since in defect-free homogeneous
regions in a metal the amplitudes of the electron wavefunctions will vary at most through
interference oscillations, without net attenuation, in such regions (D1)n and Dn, and hence
also Wn, will stay constant, apart from interference oscillations. Therefore, in a metal, the
potential drops occur in the vicinity of scattering centres and structural and geometrical inhomo-
geneities [41,104,109,122,124,125], such as defects, interfaces and changes in cross-section.

Equation (103) is a computationally cheap source of qualitative insight, as may be seen
by the following model example. We take the same two-dimensional orthonormal nearest-
neighbour TB model as that used for figures 4 and 5 above. The system now is a metallic
wire with a uniform width of 31 atoms, containing a section with five randomly distributed
substitutional impurities. At zero bias, the on-site energy on the native metal atoms is once
again set to zero, and it is set to +4 on the impurity atoms. The Fermi level at zero bias is
EF = −1, close to the middle of the band. We now turn on the battery bias W between the
reservoirs in figure 1, and use equation (103) to calculate the resulting on-site potential shifts
{Wn} in the wire. Since a single type of orbital is present in the model, in equation (103) now
(D1)n = [D1(EF )]nn, (D2)n = [D2(EF )]nn and Dn = [D(EF )]nn.

Figure 6(a) shows Wn at each atom in the segment of the wire containing the impurities.
The impurities are represented by the ringed circles. A contour plot of the same data is shown
in figure 6(b). There is a net potential drop across the disordered wire segment1. However, this
drop is not a uniform potential ramp, but is highly inhomogeneous. We see a concentrated,
localized potential drop across each impurity, with gentler potential variations in the defect-free
regions between the impurities. The potential profile across each defect has a characteristic
bipolar form, called a resistivity dipole. The concept of the resistivity dipole was introduced
by Landauer nearly half a century ago [124]. This concept has since then been studied by
many authors, for example in [41,104,109,122,125–134]. Panels (c) and (d) in figure 6 show
{Wn} after averaging over 200 impurity configurations with the same impurity concentration
as in panels (a) and (b). It is only after the configurational averaging that the one-electron
potential drop in the disordered wire segment begins to assume the form of a uniform ramp. The
reduction, in magnitude, in the extreme values of the potential, relative to the case before the
averaging, is due to the disappearance of the dramatic localized dipoles. Figure 6 demonstrates
a key property of metallic conduction: the potential drops, and the corresponding electric field,

1 As may be expected from the foregoing discussion, the potential drop across the disordered wire segment is less
than the full battery voltageW .
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Figure 6. (a) The bias-induced on-site potential shifts in a 31-atom-long segment of an infinite
31-atom-wide current-carrying wire, containing five impurities. Each impurity is marked by a
bold ring around the respective circle. The lightest shading on the plot corresponds to a potential
of 0.28W and the darkest shading to −0.24W , where W is the battery bias. (b) The data from
panel (a) as a contour plot. (c) The bias-induced on-site potential shifts after averaging over 200
configurations with the same impurity concentration as in panel (a). The lightest shading on the
plot corresponds to 0.08W and the darkest shading to −0.08W . (d) The data from panel (c) as a
contour plot.

in a current-carrying disordered metal are concentrated in the vicinity of the scattering centres,
through the formation of resistivity dipoles [122,124,125]. At the atomistic scale every defect
acts as an elemental resistor.

6. Current-induced forces

The applied voltages in nanojunction transport experiments can exceed 1 V, resulting in
enormous local current densities. Even without detailed calculation, one may expect significant
additional forces on atoms to develop under these conditions, resulting in significant changes
in the mechanical properties and stability of nanoscale conductors [135]. Recently, a
generalization of the TB bond model [119] to current-carrying systems has been developed [99].
This formalism allows intrinsic interatomic forces, the electrical current and current-induced
forces in a nanojunction to be computed in a single internally consistent calculation. This
formalism has been used to calculate interatomic forces in the presence of current and to find the
activation barriers and rates for current-induced atomistic processes, such as electromigration
and current-induced fracture of atomic wires [99,101,102]. Reference [72] gives an application
of the TB force expression from [99] to current-induced forces on adsorbates in carbon
nanotubes.
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The limitations of the formalism in [99] are that it was derived under steady-state
conditions, it uses the LCN approximation and it ignores the overlap of atomic orbitals on
neighbouring atoms. These limitations may be overcome by a TD generalization of TB, which
describes dynamically and self-consistently an interacting system of quantum electrons and
classical nuclei [103]. In this section, we will obtain the general form of the dynamical TB
equations [103]. Under steady-state conditions, in the limit of LCN, we will recover the
expression for interatomic forces in the presence of current flow from [99]. We will generalize
this steady-state force expression beyond orthogonal TB and beyond LCN.

6.1. Time-dependent Lagrangian mean-field theory

The derivation of the dynamical TB equations starts from a TD Lagrangian mean-field
theory, describing the motion of an interacting set of Ne quantum electrons and Nz classical
nuclei. In this mean-field theory, the energy of the electron–electron interaction, at any
time t , is represented by a functional, Ehxc = Ehxc[ρ], of the instantaneous electron density
ρ = ρ(r, t). We will not consider spin-dependent interactions. The choice of Ehxc is a
specification of the theory. Within the Hartree approximation, Ehxc would be given by the
Hartree energy. In an improved approximation, Ehxc might be given by the Hartree energy
plus the exchange–correlation energy, calculated from ground-state DFT in the local density
approximation [136,137]. Here, we treat Ehxc[ρ] as a general differentiable model functional.

The dynamical equations of the theory may be obtained from the Lagrangian [103, 137]

L = ih̄
Ne∑
i=1

〈ψi(t)|ψ̇i(t)〉 −
Ne∑
i=1

〈ψi(t)|T̂ |ψi(t)〉 − E[ρ] +
Nz∑
n=1

Mn[Ṙn(t)]
2/2 − φ[{Rn(t)}]

(105)

where

E[ρ] =
Nz∑
n=1

∫
ρ(r, t)vn[r − Rn(t)] dr + Ehxc[ρ] (106)

ρ = ρ(r, t) =
Ne∑
i=1

|ψi(r, t)|2. (107)

Here, {|ψi(t)〉} is a set of Ne one-particle states, one for each electron in the system, and
ψi(r, t) = 〈r|ψi(t)〉. T̂ = p̂2/2me is the one-electron kinetic energy operator, where p̂ is
the one-particle momentum operator. We recall the property 〈r|p̂|r′〉 = −ih̄∇δ(r − r′).
Throughout the paper, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) with r = (x, y, z). Rn(t), Ṙn(t) and Mn

are the position, velocity and mass of nucleus n, respectively. Everywhere below Ḟ = dF/dt
and F̈ = d2F/dt2, for any function of time F = F(t). φ is the nucleus–nucleus interaction
potential and vn is the interaction potential between an electron and nucleus n. Everywhere
index i refers to electrons and index n refers to nuclei. From now on, the limits in summations
over these indices will be omitted, on the understanding that in such summations i runs from
1 to Ne, and n runs from 1 to Nz. In equation (105), and everywhere from now on, the inner
product 〈η|ζ 〉 is defined by

〈η|ζ 〉 =
∫

〈η|r〉 dr 〈r|ζ 〉 (108)

for any two one-particle states |η〉 and |ζ 〉.
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Let us write |ψi(t)〉 = ∑
ζ ψiζ (t)|ζ 〉 and |ψ̇i(t)〉 = ∑

ζ ψ̇iζ (t)|ζ 〉, where {|ζ 〉} is an
arbitrary complete orthonormal time-independent one-electron basis. The Lagrangian in
equation (105) becomes2

L = L({ψiζ }, {ψ̇iζ }, {ψ∗
iζ }, {ψ̇∗

iζ }, {Rn}, {Ṙn})
= ih̄

∑
i,ζ

ψ∗
iζ ψ̇iζ −

∑
i,ζ,ζ ′

ψ∗
iζ Tζζ ′ψiζ ′ − E[ρ] +

∑
n

MnṘ
2
n/2 − φ({Rn}) (109)

where ψiζ = ψiζ (t), Rn = Rn(t), Tζζ ′ = 〈ζ |T̂ |ζ ′〉 and ρ = ρ(r, t) =∑
i,ζ,ζ ′ ψ

∗
iζ (t)〈ζ |r〉〈r|ζ ′〉ψiζ ′(t). The Lagrangian equations of motion are [103]3

∂L/∂ψiζ − (d/dt)(∂L/∂ψ̇iζ ) = 0 (110)

∂L/∂ψ∗
iζ − (d/dt)(∂L/∂ψ̇∗

iζ ) = 0 (111)

∂L/∂Rn − (d/dt)(∂L/∂Ṙn) = 0. (112)

Equation (111) yields the one-electron TD SE

ih̄ψ̇iζ (t) =
∑
ζ ′
Hζζ ′ψiζ ′(t) (113)

where

Hζζ ′ = 〈ζ |Ĥ |ζ ′〉 Ĥ = T̂ + V̂ V̂ =
∫

|r〉V (r, t)〈r| dr (114)

V (r, t) = δE[ρ]/δρ =
∑
n

vn[r − Rn(t)] + vhxc(r, t) vhxc(r, t) = δEhxc[ρ]/δρ. (115)

Equation (110) gives the complex conjugate of equation (113). In evaluating equations (110)
and (111), we have used the relation

∂E/∂ψ∗
iζ =

∫
(δE/δρ)(∂ρ/∂ψ∗

iζ ) dr =
∑
ζ ′

∫
〈ζ |r〉V (r, t)〈r|ζ ′〉ψiζ ′(t) dr

=
∑
ζ ′

〈ζ |V̂ |ζ ′〉ψiζ ′(t) = (∂E/∂ψiζ )∗. (116)

Equation (112) gives

MnR̈n(t) = −
∫
ρ(r, t)∇nvn[r − Rn(t)] dr − ∇nφ (117)

where ∇n = (∂/∂Rnx, ∂/∂Rny, ∂/∂Rnz) with Rn = Rn(t) = (Rnx, Rny, Rnz). We will
refer to equation (117), and to analogous Newtonian equations of motion, generically as
the Hellmann–Feynman (HF) theorem. The energy of the system is given by the Legendre
transformation

E =
∑
i,ζ

ψ̇iζ (∂L/∂ψ̇iζ ) +
∑
i,ζ

ψ̇∗
iζ (∂L/∂ψ̇

∗
iζ ) +

∑
n

Ṙn · (∂L/∂Ṙn)− L (118)

=
∑
i

〈ψi(t)|T̂ |ψit〉 + E[ρ] +
∑
n

Mn[Ṙn(t)]
2/2 + φ[{Rn(t)}]. (119)

In may verified directly that equations (113) and (117) conserve the orthonormality of electron
states and the total energy and momentum of the system of electrons and nuclei [103, 137].

2 In the present case ψ̇∗
iζ does not appear in L, but it is accommodated in the formalism for generality.

3 In this Lagrangian procedure, the real and imaginary parts of ψiζ must be treated as independent variables. This is
equivalent to treating ψiζ and ψ∗

iζ as independent variables [103].
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6.2. Time-dependent tight binding

TD TB results from an exact rearrangement of the quantity E in equation (106), combined with
a particular choice of basis, namely an atomic orbital basis. Let us first make the following
modifications. For generality, we replace the bare nuclei by ions, although we may equally well
adhere to an all-electron description. Now vn in equation (106) is the ionic pseudopotential
of ion n, and φ in equation (105) is the ion–ion interaction potential. Mn, Rn(t) and Ṙn(t)

are now the mass, position and velocity of ion n, respectively. The Ne electrons that appear
explicitly in the theory are the valence electrons, described by a set of Ne one-particle states
{|ψi(t)〉}. The density ρ in equation (107) now is the valence-electron density. The choice of
Ehxc[ρ] in equation (106) is once again a specification of the theory.

Next, we imagine performing a self-consistent valence-electron calculation for atom n in
isolation, placed at position Rn(t). This calculation produces a set of atomic orbitals {|φnγ 〉},
normalized to unity, with occupation numbers {fnγ }. Index γ labels the various orbitals on
atom n. The numbers {fnγ } are constants. Let

〈r|φnγ 〉 = φnγ [r − Rn(t)] (120)

be the orbital wavefunction, corresponding to state |φnγ 〉. Then

ρn = ρn[r − Rn(t)] =
∑
γ

fnγ |φnγ [r − Rn(t)]|2 (121)

is the valence-electron density of atom n in isolation. Let

ρ0 = ρ0[r, {Rn(t)}] =
∑
n

ρn[r − Rn(t)]. (122)

ρ0 is a rigid superposition of atomic valence-electron densities.
We now write the quantity E[ρ] in equation (106) as

E[ρ] = E[ρ0] +
∫

{ρ(r, t)− ρ0[r, {Rn(t)}]}V0(r, t) dr + ET B[ρ]

V0(r, t) = (δE/δρ)ρ=ρ0 .

(123)

V0 is the effective potential V in equation (115), evaluated at electron density ρ0. The density
functional ET B[ρ] is defined by equation (123). If ET B[ρ] has a convergent Taylor expansion,
then it may be approximated by a finite series in powers of ρ(r, t) = ρ(r, t)−ρ0[r, {Rn(t)}]
as follows [103]:

ET B[ρ] ≈
M∑
k=2

(1/k!)
∫
 ρ(r1, t) · · ·  ρ(rk, t)Fk(r1, . . . , rk) dr1 · · · drk. (124)

Here, Fk(r1, . . . , rk) = [δkEhxc/δρ(r1, t) · · · δρ(rk, t)]ρ=ρ0 , and M defines the order of the
approximation. M = 2 would correspond to the functionals used in [138] and [139].

Using equation (123), we may write∑
i

〈ψi(t)|T̂ |ψi(t)〉 + E[ρ] =
∑
i

〈ψi(t)|Ĥ 0|ψi(t)〉

−
∑
n,γ

fnγ 〈φnγ |Ĥ 0|φnγ 〉 + ET B[ρ] + E + C (125)

where

Ĥ 0 = T̂ + V̂0 V̂0 =
∫

|r〉V0(r, t)〈r| dr (126)

C =
∑
n

(Tn + En) (127)

 E = E[ρ0] −
∑
n

En. (128)
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Here, Tn = ∑
γ fnγ 〈φnγ |T̂ |φnγ 〉 is the kinetic energy of the valence electrons in atom n

in isolation, and is a constant. En = ∫
ρn[r − Rn(t)]vn[r − Rn(t)] dr + Ehxc[ρn] is the

electrostatic and exchange–correlation energy of atom n in isolation, and is a constant. C
is a sum of electronic energies of free atoms, and is a constant.  E =  E[{Rn(t)}] is a
function only of the ionic positions. Equation (125) is exact, apart from a possible finite-order
approximation to ET B , as in equation (124). Equation (125) serves as the basis for TD TB.

We now make the defining step in the derivation of the TD TB equations, and force the
electron states {|ψi(t)〉} to be linear combinations of the atomic orbitals {|φnγ 〉} by writing [103]

|ψi(t)〉 =
∑
n,γ

ψinγ (t)|φnγ 〉 (129)

|ψ̇i(t)〉 =
∑
n,γ

[ψ̇ inγ (t)|φnγ 〉 + ψinγ (t)|φ̇nγ 〉]. (130)

Here, |φ̇nγ 〉 = |∇nφnγ 〉 · Ṙn(t), where |∇nφnγ 〉 is defined by 〈r|∇nφnγ 〉 = ∇n〈r|φnγ 〉. The
valence-electron density in equation (107) becomes

ρ = ρ(r, t) =
∑

i,n,γ,n′,γ ′
ψi∗nγ (t)φ

∗
nγ [r − Rn(t)]φn′γ ′ [r − Rn′(t)]ψin′γ ′(t). (131)

Let us define

Qnγn′γ ′ = 〈φnγ |∇n′φn′γ ′ 〉 = −〈φnγ |∇φn′γ ′ 〉 = (1/ih̄)〈φnγ |p̂|φn′γ ′ 〉 (132)

where |∇φn′γ ′ 〉 is defined by 〈r|∇φn′γ ′ 〉 = ∇〈r|φn′γ ′ 〉. Let us introduce the Hermitian matrices

H 0
nγn′γ ′ = 〈φnγ |Ĥ 0|φn′γ ′ 〉 (133)

Snγn′γ ′ = 〈φnγ |φn′γ ′ 〉. (134)

Finally, let

	n′γ ′nγ =
∑
i

ψin′γ ′(t)ψ
i∗
nγ (t) (135)

	0
n′γ ′nγ = δnn′δγ γ ′fnγ . (136)

In the approximation of orthogonal orbitals, the Hermitian density matrix 	n′γ ′nγ above
corresponds to the matrix [	(W)]nγn′γ ′ , used in sections 2–5.

The Lagrangian in equation (105) can now be written as

LTB = LTB({ψinγ }, {ψ̇ inγ }, {ψi∗nγ }, {ψ̇ i∗nγ }, {Rn}, {Ṙn})
= ih̄

∑
n,γ,n′,γ ′

	n′γ ′nγQnγn′γ ′ · Ṙn′ + ih̄
∑

i,n,γ,n′,γ ′
ψi∗nγ Snγn′γ ′ψ̇ in′γ ′

−
∑

n,γ,n′,γ ′
(	n′γ ′nγ −	0

n′γ ′nγ )H
0
nγn′γ ′ − ET B[ρ]

+
∑
n

MnṘ
2
n/2 − φTB({Rn})− C (137)

where ψinγ = ψinγ (t), Rn = Rn(t), ρ is given by equation (131) and

φTB({Rn}) = φ({Rn}) + E({Rn}). (138)

φTB is the change in electrostatic and exchange–correlation energy as the free atoms are
brought together and rigidly superimposed from infinity, and is an a priori function of the
atomic species and their positions [99,103,119]. φTB can be approximated by a repulsive pair
potential [99, 103, 119]. Before deriving the equations of motion from LTB , we now make an
aside to extend the derivation to TB models with empirical parameters.
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6.3. Empirical tight binding

Above, it was shown how the quantities appearing in the Lagrangian LTB in equation (137)
are to be obtained from first principles. However, in practice one may wish to make model
assumptions about these quantities. It is therefore desirable to keep the dynamical TB equations
open to such empirical models. This is possible, because all derivations, starting from
equation (137), require only certain algebraic properties of the quantities Snγn′γ ′ , Qnγn′γ ′ ,
H 0
nγn′γ ′ , ET B , φTB and 	0

n′γ ′nγ . These properties are the following [103].

(i) The overlap matrix Snγn′γ ′ is Hermitian. For n 
= n′, for given γ and γ ′, Snγn′γ ′ depends
only on (Rn − Rn′), whence ∇nSnγn′γ ′ + ∇n′Snγn′γ ′ = 0. Snγnγ ′ is independent of Rn.
The overlap matrix is positive definite, in the sense that∑

n,γ,n′,γ ′
ψ∗
nγ Snγn′γ ′ψn′γ ′ > 0 (139)

for any set of numbers {ψnγ } that are not all equal to zero4. This property guarantees a
positive-definite norm for the electron states. It guarantees also that the eigenvalues of the
overlap matrix are positive definite and that this matrix is invertible.

(ii) Qnγn′γ ′ satisfies

Qnγn′γ ′ = ∇n′Snγn′γ ′ = −∇nSnγn′γ ′ = −∇nS
∗
n′γ ′nγ = −Q∗

n′γ ′nγ n 
= n′ (140)

Qnγnγ ′ = −Q∗
nγ ′nγ (141)

Qnγnγ ′ is independent of Rn.
(iii) The matrix H 0

nγn′γ ′ is Hermitian. H 0
nγn′γ ′ is a function only of the ionic positions

{Rn}. H 0
nγn′γ ′ is invariant under rigid translations of the ions as a whole, whence∑

n′′ ∇n′′H 0
nγn′γ ′ = 0.

(iv) ET B = ET B({ψinγ }, {ψi∗nγ }, {Rn}) is such that

∂ET B/∂ψi∗nγ =
∑
n′,γ ′

V TBnγn′γ ′ψ
i
n′γ ′ = (∂ET B/∂ψinγ )∗ (142)

where V TBnγn′γ ′ is Hermitian. For given {ψinγ }, ET B is invariant under the transformation
{Rn} → {Rn + ∆}, for any ∆. Hence, ∇nET B = (∂ET B/∂Rn){ψimγ },{ψi∗mγ },{Rm 
=n} satisfies∑
n∇nET B = 0. If we are deriving our TB model from first principles, then, by analogy

with equation (116), V TBnγn′γ ′ = 〈φnγ |V̂ T B |φn′γ ′ 〉, where V̂ T B = ∫ |r〉V TB(r, t)〈r| dr,
V TB(r, t) = δET B[ρ]/δρ, with ρ given by equation (131).

(v) φTB is a function only of the ionic positions {Rn}. φTB is invariant under rigid translations
of the ions as a whole, whence

∑
n∇nφ

TB = 0.
(vi) {fnγ } in equation (136) are constants. C is an arbitrary constant.

All derivations from this point onward rely only on these properties.

4 If, as in equation (134), an overlap matrixSαα′ is derived explicitly from a finite set of normalizable functions {φα(r)}
via Sαα′ = ∫

φ∗
α(r)φα′ (r) dr, then this matrix is guaranteed to be positive definite, provided that the functions {φα(r)}

are linearly independent, in the sense that ψ(r) = ∑
α ψαφα(r) = 0, ∀r, implies ψα = 0, ∀α. Indeed, if the {φα(r)}

are linearly independent, then for any set of numbers {ψα} that are not all equal to zero,

∑
α,α′
ψ∗
αSαα′ψα′ =

∫ ∑
α,α′
ψ∗
αφ

∗
α(r)φα′ (r)ψα′ dr =

∫
|ψ(r)|2 dr > 0

ψ(r) =
∑
α

ψαφα(r).

.
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6.4. Lagrangian equations of motion

The Lagrangian equations of motion, corresponding to LTB in equation (137), are given by
equations (110)–(112), with L replaced by LTB and with ψiζ and ψ∗

iζ replaced by ψinγ and
ψi∗nγ , respectively. Equation (111) yields the TD SE

ih̄
∑
n′,γ ′

Qnγn′γ ′ · Ṙn′(t)ψin′γ ′(t) + ih̄
∑
n′,γ ′

Snγn′γ ′ψ̇ in′γ ′(t) =
∑
n′,γ ′

HTB
nγn′γ ′ψ

i
n′γ ′(t) (143)

where

HTB
nγn′γ ′ = H 0

nγn′γ ′ + V TBnγn′γ ′ . (144)

V TBnγn′γ ′ is given by equation (142). Equation (110) gives the complex conjugate of
equation (143). In the approximation of orthogonal orbitals, the TB Hamiltonian matrix
HTB
nγn′γ ′ corresponds to the matrix Hnγn′γ ′ , used in sections 2–5. In an ab initio TB

model, we would have HTB
nγn′γ ′ = 〈φnγ |(T̂ + V̂ )|φn′γ ′ 〉 with V̂ = ∫ |r〉V (r, t)〈r| dr, where

V (r, t) = V0(r, t) + V TB(r, t) = δE[ρ]/δρ is the effective potential V in equation (115),
evaluated at the electron density in equation (131).

The third Lagrangian equation gives the HF theorem

MnR̈n(t) = −
∑

n′,γ ′,n′′,γ ′′
(	n′′γ ′′n′γ ′ −	0

n′′γ ′′n′γ ′)∇nH
0
n′γ ′n′′γ ′′ − ∇nET B − ∇nφ

TB

−
∑

γ,n′,γ ′,n′′,γ ′′,n′′′,γ ′′′
(Qnγn′γ ′S−1

n′γ ′n′′γ ′′H
TB
n′′γ ′′n′′′γ ′′′	n′′′γ ′′′nγ + c.c.)

− ih̄
∑
γ,n′,γ ′

[	n′γ ′nγ Ṙn′(t) · ∇n′Qnγn′γ ′ − c.c.]

+ ih̄
∑

γ,n′,γ ′,n′′,γ ′′,n′′′,γ ′′′
{Qnγn′γ ′S−1

n′γ ′n′′γ ′′[Qn′′γ ′′n′′′γ ′′′ · Ṙn′′′(t)]	n′′′γ ′′′nγ − c.c.}

(145)

where ∇nET B = (∂ET B/∂Rn){ψimγ },{ψi∗mγ },{Rm 
=n}. For the energy of the system, a Legendre
transformation as in equation (118) gives

ETB =
∑

n,γ,n′,γ ′
(	n′γ ′nγ −	0

n′γ ′nγ )H
0
nγn′γ ′ + ET B[{ψinγ (t)}, {ψi∗nγ (t)}, {Rn(t)}]

+
∑
n

Mn[Ṙn(t)]
2/2 + φTB[{Rn(t)}] + C. (146)

Subject to a given set of initial conditions, specifying {ψinγ (t)}, {Rn(t)} and {Ṙn(t)} at some
time, equations (143) and (145) produce unique values for these variables at any later time.
Subject to the limitations of treating the ions as classical particles [103], these equations define
a dynamical description of the system of electrons and ions. In this description, the electrons
are not confined to an instantaneous stationary state. These equations can be used to model
conduction and forces on ions away from the steady state and in the presence of a dynamical
exchange of energy between the electrons and the ions. A generalization of the ab initio semi-
classical Lagrangian dynamical formalism, in an orbital basis set, to include an external laser
field is given in [140].

It may be verified explicitly [103] that equations (143) and (145) conserve the inner product∑
n,γ,n′,γ ′ ψi∗nγ (t)Snγn′γ ′ψ

j

n′γ ′(t), the total energy of the system ETB and the quantity

P = ih̄
∑

n,γ,n′,γ ′
Qnγn′γ ′	n′γ ′nγ +

∑
n

MnṘn(t). (147)
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In view of equation (132), in a first-principles TB scheme the quantity ih̄
∑
n,γ,n′,γ ′ Qnγn′γ ′	n′γ ′nγ

above may be identified as the total electron momentum Pe(t) = ∑
i〈ψi(t)|p̂|ψi(t)〉. Then

conservation of P constitutes conservation of the total mechanical momentum of the system
of electrons and ions. In an empirical TB model, Snγn′γ ′ and Qnγn′γ ′ are ‘user-defined’ param-
eters. In that case, the extent to which the quantity ih̄

∑
n,γ,n′,γ ′ Qnγn′γ ′	n′γ ′nγ may be taken to

represent Pe(t) depends on how physical the assumed form of Snγn′γ ′ is. In all cases, however,
P in equation (147) is a conserved quantity in the theory.

All terms in equation (145) that involve the matrix Qnγn′γ ′ are Pulay-like forces [141].
Some of these terms depend explicitly on the instantaneous ionic velocities. These velocity-
dependent forces do not contribute to the rate of change,

∑
n MnṘn(t) · R̈n(t), of the total

kinetic energy of the ions [103]. Stated differently, the total work done by these forces is
zero. However, these velocity-dependent terms are needed to conserve the quantity P in
equation (147) [103, 140].

6.5. Quasistationary ions

We will now subject equations (143) and (145) to a series of approximations. In doing
so, ultimately we will recover the steady-state expression for current-induced forces in the
charge-neutral model of [99]. The first approximation is that the ionic velocities, {Ṙn(t)},
are sufficiently small to enable us to ignore all velocity-dependent terms in equations (143)
and (145). Then these equations become

ih̄
∑
n′,γ ′

Snγn′γ ′ψ̇ in′γ ′(t) =
∑
n′,γ ′

HTB
nγn′γ ′ψ

i
n′γ ′(t) (148)

MnR̈n(t) = −
∑

n′,γ ′,n′′,γ ′′
(	n′′γ ′′n′γ ′ −	0

n′′γ ′′n′γ ′)∇nH
0
n′γ ′n′′γ ′′ − ∇nET B − ∇nφ

TB

−
∑

γ,n′,γ ′,n′′,γ ′′,n′′′,γ ′′′
(Qnγn′γ ′S−1

n′γ ′n′′γ ′′H
TB
n′′γ ′′n′′′γ ′′′	n′′′γ ′′′nγ + c.c.). (149)

The electron wavefunctions {ψinγ (t)} in these equations do not yet have to satisfy any
stationarity conditions. These wavefunctions may, for instance, be a set of wavepackets,
describing a set of excess electrons, released from one end of a long molecule with slowly
moving or static ions, propagating down the molecule to meet a set of holes, coming up from the
other end. In the approximation of orthogonal orbitals, equation (148) reduces to equation (10).

6.6. Quasistationary electrons

Our next assumption is that, at least locally in some region of interest, at some time t , the
electron wavefunctions ψinγ = ψinγ (t) satisfy a time-independent SE of the form∑

n′,γ ′
HTB
nγn′γ ′ψ

i
n′γ ′ = Ei

∑
n′,γ ′

Snγn′γ ′ψin′γ ′ (150)

where, as before, HTB
nγn′γ ′ = H 0

nγn′γ ′ + V TBnγn′γ ′ with V TBnγn′γ ′ given by equation (142).
Equation (150) is satisfied exactly, and globally, if the electron subsystem is in a true stationary
state of the instantaneous ionic positions [103]. In a closed periodic system, the electron
subsystem may carry a current even in such stationary situations. For example, the one-
electron eigenstates of a finite ring, consisting of a periodically repeated unit block, may be
chosen such as to carry a circular current [99].

We may imagine also situations in which the electrons, without being in global stationary
states, have settled into a transient, but long-lived steady state. An example of such a
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situation is a capacitor, consisting of two large but finite chunks of metal, undergoing a slow
discharge through a thin connecting wire. We considered this scenario earlier, as a possible
practical realization of the system in figure 1. Although the current-carrying electrons are
not in global eigenstates of the capacitor as a whole, in the region of the connecting wire,
locally, these electrons may reasonably be described by the time-independent right- and left-
travelling wavefunctions, discussed in section 2, which satisfy a time-independent SE equation
like equation (150). Indeed, under steady-state conduction in a nanojunction between two
electrodes, the right- and left-travelling wavefunctions in section 2 constitute an explicit form
for the quasistationary electron wavefunctions in equation (150), at least in the vicinity of the
nanojunction.

The solutions to equation (150) are self-consistent in the sense that they return the same
V TBnγn′γ ′ , via equation (142), as appears in equation (150). In an actual calculation for a
current-carrying nanojunction between two leads, these steady-state wavefunctions would
have to be computed self-consistently, using an explicit form for the interaction energy ET B in
equation (142). A simple model form for this energy is discussed below. If, furthermore, the
TB parameters are derived from first principles, as outlined in section 6.2, then the calculation
would constitute an ab initio TB analogue of the DFT method of [111]. The simplest form
of self-consistency, namely the imposition of LCN, was used in [99, 101, 102] to calculate
the electronic structure and interatomic forces in current-carrying metallic nanojunctions.
Examples of ab initio TB transport calculations may be found in [71, 72, 113].

As stated above, in a long-lived but transient steady-state process, equation (150) may
hold locally, but not necessarily globally. However, if we assume that Qnγn′γ ′ , S−1

n′γ ′n′′γ ′′ and
HTB
n′′γ ′′n′′′γ ′′′ are sufficiently short ranged to ensure that equation (150) holds within all ionic sites

appearing in the last term in equation (149)5, then we may cast equation (149) as

MnR̈n(t) = −
∑

n′,γ ′,n′′,γ ′′
(	n′′γ ′′n′γ ′ −	0

n′′γ ′′n′γ ′)∇nH
0
n′γ ′n′′γ ′′ − ∇nET B − ∇nφ

TB

+
∑

n′,γ ′,n′′,γ ′′
	En′′γ ′′n′γ ′∇nSn′γ ′n′′γ ′′ 	En′′γ ′′n′γ ′ =

∑
i

ψin′′γ ′′Eiψ
i∗
n′γ ′ (151)

with ∇nET B = (∂ET B/∂Rn){ψimγ },{ψi∗mγ },{Rm 
=n}. Equation (151) is a generalization of the force
expression in the presence of steady-state conduction from [99] beyond orthogonal TB and
beyond LCN.

6.7. Orthogonal self-consistent tight binding

Our next approximation is to impose orthogonality by choosing the overlap matrix as

Snγn′γ ′ = δnn′δγ γ ′ . (152)

5 The matrix Qnγn′γ ′ , whose off-site elements are derived from those of the matrix Snγn′γ ′ via equation (140), will
share the range of the matrix Snγn′γ ′ , which, like that of the matrixHTB

nγn′γ ′ , may reasonably be assumed to be limited.

The spatial range of the matrix S−1
nγn′γ ′ may be estimated as follows. Let us write Snγn′γ ′ = δnn′δγ γ ′ − (−δSnγn′γ ′ ).

The pure off-diagonal matrix (−δSnγn′γ ′ ) has the mathematical properties of a Hamiltonian matrix in orthogonal TB
with zero on-site energies. Since, by assumption, the matrix S is positive definite, the eigenvalues of the matrix (−δS)
must all be less than 1. Hence, the matrix S−1 has the mathematical properties of a TB Green function, (E −H)−1,
with the matrix (−δS) playing the role of the TB Hamiltonian matrixH , and with an energyE = 1 that lies above the
highest eigenvalue ofH . If we take the size of our system to infinity, then we may expect the eigenvalues of (−δS) to
form a continuous band, or bands, all lying below 1. Hence, for such extended systems, S−1

nγn′γ ′ must behave like a TB
Green function at an energy outside any band, above the uppermost band edge. Therefore, in regions where that Green
function decays with distance, so too must S−1

nγn′γ ′ . In particular, where that Green function decays exponentially with

distance, so too must S−1
nγn′γ ′ .
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For purposes of illustration, let us now consider possible model forms for the other ingredients
of the TB model. We make every simplification in H 0

nγn′γ ′ . If γ 
= γ ′, then H 0
nγnγ ′ = 0,

while H 0
nγnγ is a constant independent of the ionic positions, and is a parameter of the

model. For n 
= n′, for given γ and γ ′, the hopping integral H 0
nγn′γ ′ is a function only of

(Rn′ − Rn), and is a parameter of the model [99, 100]. φTB is approximated by a repulsive
pair potential [99, 100, 119].

For ET B = ET B({ψinγ }, {ψi
∗
nγ }, {Rn}) we take the model expression

ET B = (1/2)
∑
n

Un  q
2
n + (1/2)

∑
n

∑
n′ 
=n

fnn′  qn  qn′  qn = qn − q0
n. (153)

Here, q0
n = ∑

γ fnγ is the number of valence electrons in atom n in isolation and qn =∑
γ 	nγnγ is the number of valence electrons at site n in our actual system of electrons and

ions. Thus,  qn is the excess number of electrons at site n. Un is a constant, independent
of the ionic positions. The quantity fnn′ = fn′n is a function only of the distance between
ions n and n′. Un and fnn′ are parameters of the model [120, 138]. ET B represents a set of
second-order Coulomb-like interactions. This model may be viewed as a monopole version
of the multipole self-consistent TB model in [138]. This model may be viewed also as a
generalization of the charge-neutral TB bond model in [99, 100] with an explicit inclusion of
second-order interaction terms.

V TBnγn′γ ′ in equation (142) is diagonal and is given by

V TBnγn′γ ′ = δnn′δγ γ ′  n  n =
(
Un  qn +

∑
n′′ 
=n

fnn′′  qn′′

)
. (154)

In this model, variations in the on-site energy HTB
nγnγ = H 0

nγnγ + V TBnγnγ arise solely from the
interaction energy ET B , via V TBnγnγ =  n. The on-site energy shifts { n} in equation (154)
constitute an explicit, self-consistent form for the rigid shifts { n}, discussed in section 5.2.

The quantity ∇nET B , appearing in equations (145), (149) and (151), is given by

∇nET B = (∂ET B/∂Rn){ψimγ },{ψi∗mγ },{Rm 
=n} =
∑
n′ 
=n

 qn  qn′ ∇nfnn′ . (155)

Equation (151) for the steady-state Newtonian force on ion n now becomes

MnR̈n(t) = −2
∑
n′ 
=n

∑
γ,γ ′

Re(	n′γ ′nγ∇nH
0
nγn′γ ′)− ∇nET B − ∇nφ

TB (156)

with ∇nET B given by equation (155). Equation (156) is a generalization of the force expression
in the presence of steady-state conduction from [99] beyond LCN.

6.8. Local charge neutrality

Let us now consider the limit of strong electron–electron repulsion, where {Un} and {fnn′ }
become very large. This limit corresponds to making the capacitance of the system very small.
In this limit, the system cannot tolerate the accumulation of excess charges. Hence, in this
limit the system will behave in such a way as to keep { qn} in equation (153) close to zero.
This limit, therefore, is the limit of LCN.

Physically, in this limit the on-site energy shifts { n} in equation (154) should remain
finite. Looked at from a numerical point of view,  qn → 0 must in general be achievable
with finite { n}. But if { n}, linear in {Un}, {fnn′ } and linear in { qn}, remain finite, then
the quantity ∇nET B in equation (155), which is linear in {Un}, {fnn′ } and quadratic in { qn},
must tend to zero.
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In an actual steady-state calculation in the LCN limit, the {V TBnγnγ =  n} are no longer
determined by equation (154). Instead, they are adjusted to be such that the solutions to
equation (150), with Snγn′γ ′ = δnn′δγ γ ′ , give  qn = qn − q0

n = 0. This is done by an iterative
numerical procedure. The practical implementation of this procedure for a current-carrying
nanojunction is discussed for instance in [99]. Let now	LCNn′γ ′nγ designate the TB density matrix
	n′γ ′nγ , constructed from the respective solutions to equation (150). Since, as argued above,
∇nET B → 0 in the LCN limit, and since V TBnγn′γ ′ is diagonal, equation (156) may be written as

MnR̈n(t) = −2
∑
n′ 
=n

∑
γ,γ ′

Re(	LCNn′γ ′nγ∇nH
TB
nγn′γ ′)− ∇nφ

TB (157)

where, once again, HTB
nγn′γ ′ = H 0

nγn′γ ′ + V TBnγn′γ ′ . Equation (157) is the force expression in the
presence of steady-state conduction, obtained in [99]. In that reference, this expression was
obtained from a statistical analysis. Here, it has been derived as the steady-state limit of the
general dynamical HF theorem in equation (145), in an orthogonal TB model, in the limit of
strong electron–electron repulsions.

7. Summary and future challenges

In this paper, we have discussed the TB approach to the modelling of the mechanical and
electronic properties of current-carrying nanoscale systems. Five equivalent sets of expressions
for the current and the zero-voltage conductance were derived from scratch. The way in which
the current density and self-consistent local potential enter the TB formalism was discussed.
In section 6, we derived from first principles a set of coupled TB equations of motion, namely
equations (143) and (145), to describe dynamically and self-consistently a set of interacting
electrons and ions. The form of the TB Lagrangian in equation (137) allows a range of TB
models—from ab initio to empirical ones, from the LCN limit of strong electron–electron
repulsion to the limit of non-interacting electrons [103]—to be treated within a common
framework. The TD formalism opens up the possibility of using TB to model dynamical
transport processes, such as the discharge of two initially charged nanoscale clusters connected
by an atomic wire, or the propagation of an electron–hole pair in a long molecule. By taking a
series of limits, we then recovered an earlier expression for interatomic forces in the presence
of steady-state conduction, and we generalized this steady-state force expression beyond LCN
and beyond orthogonal TB.

Current-induced mechanical effects in atomic-scale conductors are an attractive recent
line of work in the area. Calculations, based on the steady-state force expression from [99],
have shown that current flow can result in a dramatic reduction in the strength and stability of
atomic wires [102]. These calculations have emphasized furthermore that in order to have a
complete picture of current-induced mechanical processes in nanojunctions, it is necessary to
know the local temperature in the junction in the presence of current flow [102, 142].

The linear dimension of a nanojunction is typically much smaller than the inelastic electron
mean free path. Therefore, individual electrons dissipate only a small fraction of their energy
in the junction itself. However, due to the high local current density, there are a lot of current-
carrying electrons, each dropping a small part of its energy, in the nanojunction at any one
time. Hence, although most of the global power may be expected to be dissipated in the nearby
macroscopic electrodes [142,143], the power per atom in the nanojunction, where the current
density is huge, may be large.

Quantitatively, a simple TB model of electron–phonon coupling suggests that at the cur-
rent densities, attainable in metallic nanojunctions, the power per atom in the nanojunction
can be sufficiently high to lead to a significant local temperature rise [102,142]. Experimental
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evidence for such heating is discussed in [142]. The calculations in [142], however, were based
on severe approximations, in which every atom was treated as if it were embedded in a bulk
environment. To make further progress it is necessary to devise a model of energy exchange be-
tween current-carrying electrons and phonons, combined with thermal conduction away from
the nanojunction, that takes account of the local electronic structure and vibrational modes in a
realistic nanojunction geometry. One line of approach to this challenge might be the semiclas-
sical dynamical TB formalism in section 6. Another, which would retain the quantum nature
of atomic vibrations, may be to extend the TB model of electron–phonon coupling from [142]
to incorporate the local electronic and phononic structure in a general atomistic environment.
Such atomistic TB simulations of local heating, combined with the TB methods for the sim-
ulation of current flow and current-induced forces discussed earlier, would provide a compre-
hensive unified technique for simulating what happens in current-carrying nanostructures.
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